Au delà des probiotiques,
LES POSTBIOTIQUES

QUE SONT LES PROBIOTIQUES, PRÉBIOTIQUES, SYNBIOTIQUES ET POSTBIOTIQUES?

Le terme “biotique” provient du grec biōtikós qui signifie “relatif à la vie” et désigne “l’écosystème biologique composé d’organismes vivants et de leur environnement physique”.1Wegh C.A.M. et al., 2019

En 1953, année de la découverte de la structure en double hélice de l’ADN, le mot “probiotique” a été utilisé pour la première fois en vue d’introduire les “substances actives essentielles pour le développement d’une vie saine”.2Gasbarrini G. et al., 2016 A l’heure actuelle, les probiotiques sont définis comme “des micro-organismes vivants qui, lorsqu’ils sont administrés en quantités adéquates, confèrent un bénéfice pour la santé de l’hôte”.3Hill C. et al., 2014

Un prébiotique est un “substrat qui est utilisé de manière sélective par les micro-organismes de l’hôte, ce qui lui confère un avantage pour la santé”.4Gibson et al., 2017

Les symbiotiques sont des “mélanges synergiques de probiotiques et de prébiotiques qui ont un effet bénéfique sur l’hôte en améliorant la survie et la colonisation des micro-organismes vivants bénéfiques dans le tractus gastro-intestinal de l’hôte”.5FAO/WHO, 20016FAO/WHO, 2002

Il n’existe pas encore de consensus mondial sur la définition du terme “postbiotique”, car c’est un nouveau arrivé dans le monde des « biotiques ». La meilleure définition qu’on puisse donner à ce terme est la suivante : un postbiotique est un « composé bioactif produit au cours d’un processus de fermentation qui favorise la santé et/ou le bien-être7Collado et al., 2019 de manière directe ou indirecte.8Tsilingiri et al., 2013 » Il est donc important de noter que la viabilité du micro-organisme à l’origine de cet effet n’est plus nécessaire. Ainsi, les cellules microbiennes non viables, tuées par la chaleur (également appelées parabiotiques), les métabolites microbiens (protéines, lipides, glucides, vitamines, acides organiques), les composants de la paroi cellulaire ou d’autres molécules complexes de la matrice extracellulaire bactérienne peuvent être considérés comme des postbiotiques.9.13George Kerry et al., 2018 Malagón-Rojas et al., 2020 Taverniti et al., 2011 Aguilar-Toalá et al., 2018  Konstantinov et al., 2013

Consulter la bibliographie Fermer la bibliographie

1. Wegh CAM, Geerlings SY, Knol J, Roeselers G, Belzer C. Postbiotics and Their Potential Applications in Early Life Nutrition and Beyond. Int J Mol Sci. 2019 Sep 20;20(19). pii: E4673. doi: 10.3390/ijms20194673. Review. PubMed PMID:31547172; PubMed Central PMCID: PMC6801921.

2. Gasbarrini G, Bonvicini F, Gramenzi A. Probiotics History. J Clin Gastroenterol. 2016 Nov/Dec;50 Suppl 2, Proceedings from the 8th Probiotics,Prebiotics & New Foods for Microbiota and Human Health meeting held in Rome, Italy on September 13-15, 2015:S116-S119. PubMed PMID: 27741152.

3. Hill C, Guarner F, Reid G, Gibson GR, Merenstein DJ, Pot B, Morelli L, Canani RB, Flint HJ, Salminen S, Calder PC, Sanders ME. Expert consensus document. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol. 2014 Aug;11(8):506-14. doi: 10.1038/nrgastro.2014.66. Epub 2014 Jun 10. PubMed PMID: 24912386.

4. Gibson GR, Hutkins R, Sanders ME, Prescott SL, Reimer RA, Salminen SJ, Scott K, Stanton C, Swanson KS, Cani PD, Verbeke K, Reid G. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP)consensus statement on the definition and scope of prebiotics. Nat Rev Gastroenterol Hepatol. 2017 Aug;14(8):491-502. doi: 10.1038/nrgastro.2017.75. Epub 2017 Jun 14. Review. PubMed PMID: 28611480.

5. FAO/WHO. Food and Agriculture Organization of the United Nations/World Health Organization Health and Nutritional Properties of Probiotics in Food including Powder Milk with Live Lactic Acid Bacteria.

6. Food and Agriculture Organization of the United Nations/World Health Organization (FAO/WHO). Guidelines for the Evaluation of Probiotics in Food. In Joint Fao/Who Working Group on Drafting Guidelines for the Evaluation of Probiotics in Food; WHO: London, ON, Canada, 2002.

7. Collado MC, Vinderola G, Salminen S. Postbiotics: facts and open questions. A position paper on the need for a consensus definition. Benef Microbes. 2019 Oct 14;10(7):711-719. doi: 10.3920/BM2019.0015. Epub 2019 Aug 7. PubMed PMID: 31965850.

8. Tsilingiri K, Rescigno M. Postbiotics: what else? Benef Microbes. 2013 Mar 1;4(1):101-7. doi: 10.3920/BM2012.0046. Review. PubMed PMID: 23271068.

9. George Kerry R, Patra JK, Gouda S, Park Y, Shin HS, Das G. Benefaction of probiotics for human health: A review. J Food Drug Anal. 2018 Jul;26(3):927-939. doi: 10.1016/j.jfda.2018.01.002. Epub 2018 Feb 2. Review. PubMed PMID: 29976412.

10. Malagón-Rojas JN, Mantziari A, Salminen S, Szajewska H. Postbiotics for Preventing and Treating Common Infectious Diseases in Children: A Systematic Review. Nutrients. 2020 Jan 31;12(2). pii: E389. doi: 10.3390/nu12020389. Review. PubMed PMID: 32024037; PubMed Central PMCID: PMC7071176.

11. Taverniti V, Guglielmetti S. The immunomodulatory properties of probiotic microorganisms beyond their viability (ghost probiotics: proposal of paraprobiotic concept). Genes Nutr. 2011 Aug;6(3):261-74. doi:10.1007/s12263-011-0218-x. Epub 2011 Apr 16. PubMed PMID: 21499799; PubMed Central PMCID: PMC3145061.

12. Aguilar-Toalá, J.; Garcia-Varela, R.; Garcia, H.; Mata-Haro, V.; González-Córdova, A.; Vallejo-Cordoba, B.; Hernández-Mendoza, A. Postbiotics: An evolving term within the functional foods field. Trends Food Sci. Technol. 2018, 75, 105–114.

13. Konstantinov SR, Kuipers EJ, Peppelenbosch MP. Functional genomic analyses of the gut microbiota for CRC screening. Nat Rev Gastroenterol Hepatol. 2013Dec;10(12):741-5. doi: 10.1038/nrgastro.2013.178. Epub 2013 Sep 17. PubMed PMID: 24042452.

EN QUOI LES POSTBIOTIQUES SONT-ILS DIFFÉRENTS DES PROBIOTIQUES ET DES PRÉBIOTIQUES ET QUEL EST LEUR VALEUR AJOUTEE ?

La majorité des probiotiques sont des bactéries lactiques (LAB) telles que les espèces Lactobacillus ou Bifidobacterium. Ils sont généralement reconnus être sans risque (GRAS) par la FDA14O’Toole et al., 2017 et sont utilisés pour une variété d’applications allant de l’industrie alimentaire au clinique.3Hill et al., 201414O’Toole et al., 201715Wilkins et al., 2017 Cependant, les communautés scientifiques et médicales sont de plus en plus préoccupées par la sécurité de l’utilisation des probiotiques par les populations vulnérables, en particulier les jeunes enfants et les adultes souffrant de pathologies sous-jacentes.16.18Goldstein et al., 2015 Doron et al., 2015 Ohishi et al., 2010

L’une des principales préoccupations est la translocation de probiotiques de l’intestin – ou plus généralement de la zone d’application – vers la circulation systémique. Cette translocation est capable d’engendrer des bactérémies.19.26Barraud et al., 2013 Barraud et al., 2010 Honeycut et al., 2007 Suez et al., 2018 Zmora et al., 2018 Kunz et al., 2004 Salminen et al., 2003 Thomas et al., 2010  Cela a été validé de façon spectaculaire par Yelin et al., qui a démontré que les probiotiques pouvaient directement provoquer des bactérémies et évoluer de façon adaptative chez des patients gravement malades.27Yelin et al., 2019  Un autre problème est l’acquisition et le transfert potentiels de gènes de résistance aux antibiotiques à des bactéries pathogènes par transfert horizontal de gènes.28Wong et al., 201529Aceti et al., 2018  En outre, des souches probiotiques spécifiques peuvent exprimer des facteurs de virulence putatifs entraînant des effets cytotoxiques30Rowan et al., 2001 ou remplacer les bactéries bénéfiques commensales existantes. La plupart des prébiotiques sont à base de glucides31Sanders et al., 2019et comprennent des oligosaccharides tels que les galactooligosaccharides à chaîne courte (scGOS) et les fructooligosaccharides à chaîne longue (lcFOS).32.34Giovannini et al., 2014 Vandenplas et al., 2015 Sierra et al., 2014 Néanmoins, des études de séquençage des microbiomes ont révélé que les résultats de l’administration de prébiotiques sont beaucoup plus complexes4Gibson et al., 2017, car des membres inattendus ou non encore identifiés du microbiote peuvent être enrichis directement ou par alimentation croisée.36.38Trompette et al., 2014 Holscher et al., 2015 Salonen et al., 2014

Les postbiotiques semblent répondre à la plupart de ces problèmes et limites. Ils sont notamment plus sûrs que les probiotiques car ils peuvent être dosés de manière optimale sans risque de croissance / colonisation bactérienne.39de Almada et al., 2016

tab sciencex
Consulter la bibliographie Fermer la bibliographie

3. Hill C, Guarner F, Reid G, Gibson GR, Merenstein DJ, Pot B, Morelli L, Canani RB, Flint HJ, Salminen S, Calder PC, Sanders ME. Expert consensus document. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol. 2014 Aug;11(8):506-14. doi: 10.1038/nrgastro.2014.66. Epub 2014 Jun 10. PubMed PMID: 24912386.

4. Gibson GR, Hutkins R, Sanders ME, Prescott SL, Reimer RA, Salminen SJ, Scott K, Stanton C, Swanson KS, Cani PD, Verbeke K, Reid G. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP)consensus statement on the definition and scope of prebiotics. Nat Rev Gastroenterol Hepatol. 2017 Aug;14(8):491-502. doi: 10.1038/nrgastro.2017.75. Epub 2017 Jun 14. Review. PubMed PMID: 28611480.

14. O’Toole PW, Marchesi JR, Hill C. Next-generation probiotics: the spectrum from probiotics to live biotherapeutics. Nat Microbiol. 2017 Apr 25;2:17057. doi:10.1038/nmicrobiol.2017.57. PubMed PMID: 28440276.

15. Wilkins T, Sequoia J. Probiotics for Gastrointestinal Conditions: A Summary of the Evidence. Am Fam Physician. 2017 Aug 1;96(3):170-178. Review. PubMed PMID:28762696.

16. Goldstein EJ, Tyrrell KL, Citron DM. Lactobacillus species: taxonomiccomplexity and controversial susceptibilities. Clin Infect Dis. 2015 May 15;60 Suppl 2:S98-107. doi: 10.1093/cid/civ072. Review. PubMed PMID: 25922408.

17. Doron S, Snydman DR. Risk and safety of probiotics. Clin Infect Dis. 2015 May 15;60 Suppl 2:S129-34. doi: 10.1093/cid/civ085. Review. PubMed PMID: 25922398; PubMed Central PMCID: PMC4490230.

18. Ohishi A, Takahashi S, Ito Y, Ohishi Y, Tsukamoto K, Nanba Y, Ito N, Kakiuchi S, Saitoh A, Morotomi M, Nakamura T. Bifidobacterium septicemia associated withpostoperative probiotic therapy in a neonate with omphalocele. J Pediatr. 2010 Apr;156(4):679-81. doi:10.1016/j.jpeds.2009.11.041. PubMed PMID: 20303445.

19. Barraud D, Bollaert PE, Gibot S. Impact of the administration of probiotics on mortality in critically ill adult patients: a meta-analysis of randomized controlled trials. Chest. 2013 Mar;143(3):646-655. doi: 10.1378/chest.12-1745.Review. PubMed PMID: 23460153.

20. Barraud D, Blard C, Hein F, Marçon O, Cravoisy A, Nace L, Alla F, Bollaert PE, Gibot S. Probiotics in the critically ill patient: a double blind, randomized, placebo-controlled trial. Intensive Care Med. 2010 Sep;36(9):1540-7. doi: 10.1007/s00134-010-1927-0. Epub 2010 May 26. PubMed PMID: 20502866.

21. Honeycutt TC, El Khashab M, Wardrop RM 3rd, McNeal-Trice K, Honeycutt AL,Christy CG, Mistry K, Harris BD, Meliones JN, Kocis KC. Probiotic administration and the incidence of nosocomial infection in pediatric intensive care: a randomized placebo-controlled trial. Pediatr Crit Care Med. 2007 Sep;8(5):452-8; quiz 464. PubMed PMID: 17693918.

22. Suez J, Zmora N, Zilberman-Schapira G, Mor U, Dori-Bachash M, Bashiardes S,Zur M, Regev-Lehavi D, Ben-Zeev Brik R, Federici S, Horn M, Cohen Y, Moor AE,Zeevi D, Korem T, Kotler E, Harmelin A, Itzkovitz S, Maharshak N, Shibolet O,Pevsner-Fischer M, Shapiro H, Sharon I, Halpern Z, Segal E, Elinav E.Post-Antibiotic Gut Mucosal Microbiome Reconstitution Is Impaired by Probiotics and Improved by Autologous FMT. Cell. 2018 Sep 6;174(6):1406-1423.e16. doi:10.1016/j.cell.2018.08.047. PubMed PMID: 30193113.

23. Zmora N, Zilberman-Schapira G, Suez J, Mor U, Dori-Bachash M, Bashiardes S,Kotler E, Zur M, Regev-Lehavi D, Brik RB, Federici S, Cohen Y, Linevsky R,Rothschild D, Moor AE, Ben-Moshe S, Harmelin A, Itzkovitz S, Maharshak N, Shibolet O, Shapiro H, Pevsner-Fischer M, Sharon I, Halpern Z, Segal E, Elinav E.Personalized Gut Mucosal Colonization Resistance to Empiric Probiotics Is Associated with Unique Host and Microbiome Features. Cell. 2018 Sep 6;174(6):1388-1405.e21. doi: 10.1016/j.cell.2018.08.041. PubMed PMID: 30193112.

24. Kunz AN, Noel JM, Fairchok MP. Two cases of Lactobacillus bacteremia during probiotic treatment of short gut syndrome. J Pediatr Gastroenterol Nutr. 2004 Apr;38(4):457-8. PubMed PMID: 15085028.

25. Salminen MK, Rautelin H, Tynkkynen S, Poussa T, Saxelin M, Valtonen V, Järvinen A. Lactobacillus bacteremia, clinical significance, and patient outcome, with special focus on probiotic L. rhamnosus GG. Clin Infect Dis. 2004 Jan 1;38(1):62-9. Epub 2003 Dec 4. PubMed PMID: 14679449.

26. Thomas DW, Greer FR; American Academy of Pediatrics Committee on Nutrition; American Academy of Pediatrics Section on Gastroenterology, Hepatology, and Nutrition. Probiotics and prebiotics in pediatrics. Pediatrics. 2010 Dec;126(6):1217-31. doi: 10.1542/peds.2010-2548. Epub 2010 Nov 29. Review. PubMed PMID: 21115585.

27. Yelin I, Flett KB, Merakou C, Mehrotra P, Stam J, Snesrud E, Hinkle M, Lesho E, McGann P, McAdam AJ, Sandora TJ, Kishony R, Priebe GP. Genomic and epidemiological evidence of bacterial transmission from probiotic capsule to blood in ICU patients. Nat Med. 2019 Nov;25(11):1728-1732. doi:10.1038/s41591-019-0626-9. Epub 2019 Nov 7. PubMed PMID: 31700189; PubMed Central PMCID: PMC6980696.

28. Wong A, Ngu DY, Dan LA, Ooi A, Lim RL. Detection of antibiotic resistance in probiotics of dietary supplements. Nutr J. 2015 Sep 14;14:95. doi:10.1186/s12937-015-0084-2. PubMed PMID: 26370532; PubMed Central PMCID: PMC4568587.

29. Aceti A, Beghetti I, Maggio L, Martini S, Faldella G, Corvaglia L. Filling the Gaps: Current Research Directions for a Rational Use of Probiotics in Preterm Infants. Nutrients. 2018 Oct 10;10(10). pii: E1472. doi: 10.3390/nu10101472. Review. PubMed PMID: 30308999; PubMed Central PMCID: PMC6213418.

30. Rowan NJ, Deans K, Anderson JG, Gemmell CG, Hunter IS, Chaithong T. Putative virulence factor expression by clinical and food isolates of Bacillus spp. after growth in reconstituted infant milk formulae. Appl Environ Microbiol. 2001 Sep;67(9):3873-81. PubMed PMID: 11525980; PubMed Central PMCID: PMC93104.

31. Sanders ME, Merenstein DJ, Reid G, Gibson GR, Rastall RA. Probiotics and prebiotics in intestinal health and disease: from biology to the clinic. Nat Rev Gastroenterol Hepatol. 2019 Oct;16(10):605-616. doi:10.1038/s41575-019-0173-3. Epub 2019 Jul 11. Review. PubMed PMID: 31296969.

32. Giovannini M, Verduci E, Gregori D, Ballali S, Soldi S, Ghisleni D, Riva E; PLAGOS Trial Study Group. Prebiotic effect of an infant formula supplemented with galacto-oligosaccharides: randomized multicenter trial. J Am Coll Nutr.2014;33(5):385-93.doi:10.1080/07315724.2013.878232. Epub 2014 Oct 10. PubMed PMID: 25302927.

33. Vandenplas Y, Zakharova I, Dmitrieva Y. Oligosaccharides in infant formula: more evidence to validate the role of prebiotics. Br J Nutr. 2015 May 14;113(9):1339-44. doi: 10.1017/S0007114515000823. Review. PubMed PMID: 25989994.

34. Sierra C, Bernal MJ, Blasco J, Martínez R, Dalmau J, Ortuño I, Espín B, Vasallo MI, Gil D, Vidal ML, Infante D, Leis R, Maldonado J, Moreno JM, Román E. Prebiotic effect during the first year of life in healthy infants fed formula containing GOS as the only prebiotic: a multicentre, randomised, double-blind and placebo-controlled trial. Eur J Nutr. 2015 Feb;54(1):89-99. doi:10.1007/s00394-014-0689-9. Epub 2014 Mar 27. PubMed PMID: 24671237; PubMed Central PMCID: PMC4303717.

35. Hutkins RW, Krumbeck JA, Bindels LB, Cani PD, Fahey G Jr, Goh YJ, Hamaker B, Martens EC, Mills DA, Rastal RA, Vaughan E, Sanders ME. Prebiotics: why definitions matter. Curr Opin Biotechnol. 2016 Feb;37:1-7. doi: 10.1016/j.copbio.2015.09.001. Epub 2015 Sep 29. Review. PubMed PMID: 26431716; PubMed Central PMCID: PMC4744122.

36. Trompette A, Gollwitzer ES, Yadava K, Sichelstiel AK, Sprenger N, Ngom-Bru C, Blanchard C, Junt T, Nicod LP, Harris NL, Marsland BJ. Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nat Med. 2014 Feb;20(2):159-66. doi: 10.1038/nm.3444. Epub 2014 Jan 5. PubMed PMID: 24390308.

37. Holscher HD, Caporaso JG, Hooda S, Brulc JM, Fahey GC Jr, Swanson KS. Fiber supplementation influences phylogenetic structure and functional capacity of the human intestinal microbiome: follow-up of a randomized controlled trial. Am J Clin Nutr. 2015 Jan;101(1):55-64. doi: 10.3945/ajcn.114.092064. Epub 2014 Nov 12. PubMed PMID: 25527750.

38. Salonen A, Lahti L, Salojärvi J, Holtrop G, Korpela K, Duncan SH, Date P, Farquharson F, Johnstone AM, Lobley GE, Louis P, Flint HJ, de Vos WM. Impact of diet and individual variation on intestinal microbiota composition and fermentation products in obese men. ISME J. 2014 Nov;8(11):2218-30. doi: 10.1038/ismej.2014.63. Epub 2014 Apr 24. PubMed PMID: 24763370; PubMed Central PMCID: PMC4992075.

39. de Almada, C. N., Almada, C. N., Martinez, R. C. R., & Sant ́Ana, A. S. (2016). Paraprobiotics: Evidences on their ability to modify biological responses, inactivation methods and perspectives on their application in foods. Trends in Food Science & Technology, 58, 96–114.

QUEL EST LE MÉCANISME D'ACTION DES POSTBIOTIQUES?

Contrairement à la pensée commune, la viabilité bactérienne n’est pas nécessaire pour l’efficacité40Piqué et al., 2019  et les postbiotiques peuvent imiter les mécanismes d’action des probiotiques grâce aux composants des cellules et métabolites microbiens. Les postbiotiques agissent principalement à deux niveaux :

Effet sur les interactions avec la communauté microbienne

Les postbiotiques peuvent bloquer les agents pathogènes via les bactériocines et les acides organiques. Ils peuvent également empêcher l’adhésion et l’invasion des agents pathogènes, ainsi que la formation de biofilms.1Wegh et al., 201940Piqué et al., 2019

La compétition avec les pathogènes gastro-intestinaux pour les sites d’adhésion a été bien documentée chez les postbiotiques tels que les cellules tuées par la chaleur (postbiotiques tyndallisés).41.44Canducci et al., 2000 Aiba et al., 2017 Chauvière et al., 1992 Moyen et al., 1986 Les composants de la paroi cellulaire tels que les exopolysaccharides (EPS) isolés des LAB possèdent des propriétés antiadhésives contre les agents pathogènes, notamment via la formation d’un film protecteur.40Piqué et al., 201945Sarkar et al., 201646Castro-Bravo et al., 2018 Les protéines de la couche de surface (SLP) peuvent également contribuer à l’agglutination des bactéries pathogènes.47Lebeer et al., 201048Tareb et al., 2013

Les surnageants cellulaires contiennent une large gamme de composés antibactériens comme l’acide lactique et le peroxyde d’hydrogène.40Piqué et al., 201949Mariam et al., 201450Lukic et al., 2017 Ils contiennent également des peptides antimicrobiens (AMP) tels que les bactériocines, qui sont des AMP synthétisées par les ribosomes. Les bactériocines ont des propriétés bactériostatiques ou bactéricides bien décrites.51.54Kareem et al., 2014 Ooi et al., 2015 Dobson et al., 2011 do Carmo et al., 2018 D’autres propriétés intéressantes des bactériocines sont une bonne tolérance au pH (allant de 3 à 10) et une stabilité thermique, qui permet aux bactériocines de conserver leur activité biologique dans les cellules tuées par la chaleur.45Sarkar et al., 2016

Effet sur les interactions hôte-microbiote

Les postbiotiques ont des effets immunomodulateurs similaires à ceux des probiotiques vivants.11Taverniti et al., 2011 Les LAB peuvent provoquer la production d’IL-12, qui favorise l’immunité innée.55Arai et al., 2018 Il est intéressant de noter que les postbiotiques tels que les bactéries tuées par la chaleur induisent des niveaux d’IL-12 encore plus élevés que les bactéries vivantes.56Izumo et al., 201157Sashihara et al., 2007 Lactobacillus paracasei semble avoir la plus grande capacité à induire la sécrétion d’IL-12 par rapport à Lactobacillus reuteri, Lactobacillus casei et Lactobacillus plantarum.55Arai et al., 2018 D’autres expériences avec des postbiotiques provenant de Bifidobacterium breve et Streptococcus thermophilus ont induit une forte sécrétion d’IL-10 par l’intermédiaire de TLR-2, indiquant des fonctions de régulation immunitaire.58Hoarau et al., 2006

En outre, des composants de la paroi cellulaire tels que les acides lipotéichoïques et les peptidoglycanes sont impliqués dans les propriétés immunomodulatrices des postbiotiques.59Lee et al., 201360Vinogradov et al., 2016 Il a été démontré que les acides lipotéichoïques sont des inducteurs d’IL-1261Kolling et al., 2018 tandis que les peptidoglycanes peuvent freiner la libération de cytokines inflammatoires.62Wu et al., 2015 Les EPS et les SLP sont également engagés dans un dialogue réciproque avec le système immunitaire de l’hôte et il a été démontré qu’ils jouent un rôle dans l’homéostasie intestinale.45Sarkar et al., 201663Patten et al., 201364Gareau et al., 2010 Divers avantages pour la santé ont été décrits, notamment des effets cardio-protecteurs, antiulcéreux, antioxydants, hypocholestérolémiques et anti-prolifératifs.1Wegh et al., 201965.67Das et al., 2014 Hongpattarakere et al., 2012 Wang et al., 2014Enfin, les surnageants cellulaires contiennent des métabolites et des facteurs solubles qui peuvent interagir avec les cellules immunitaires des muqueuses et possèdent une activité anti-inflammatoire et antioxydante.58Hoarau et al., 200668De Marco et al., 2018

Consulter la bibliographie Fermer la bibliographie

1. Wegh CAM, Geerlings SY, Knol J, Roeselers G, Belzer C. Postbiotics and Their Potential Applications in Early Life Nutrition and Beyond. Int J Mol Sci. 2019 Sep 20;20(19). pii: E4673. doi: 10.3390/ijms20194673. Review. PubMed PMID:31547172; PubMed Central PMCID: PMC6801921.

11. Taverniti V, Guglielmetti S. The immunomodulatory properties of probiotic microorganisms beyond their viability (ghost probiotics: proposal of paraprobiotic concept). Genes Nutr. 2011 Aug;6(3):261-74. doi:10.1007/s12263-011-0218-x. Epub 2011 Apr 16. PubMed PMID: 21499799; PubMed Central PMCID: PMC3145061.

40. Piqué N, Berlanga M, Miñana-Galbis D. Health Benefits of Heat-Killed (Tyndallized) Probiotics: An Overview. Int J Mol Sci. 2019 May 23;20(10). pii: E2534. doi: 10.3390/ijms20102534. Review. PubMed PMID: 31126033; PubMed Central PMCID: PMC6566317.

41. Canducci F, Armuzzi A, Cremonini F, Cammarota G, Bartolozzi F, Pola P, Gasbarrini G, Gasbarrini A. A lyophilized and inactivated culture of Lactobacillus acidophilus increases Helicobacter pylori eradication rates. Aliment Pharmacol Ther. 2000 Dec;14(12):1625-9. PubMed PMID: 11121911.

42. Aiba Y, Ishikawa H, Tokunaga M, Komatsu Y. Anti-Helicobacter pylori activity of non-living, heat-killed form of lactobacilli including Lactobacillus johnsonii No.1088. FEMS Microbiol Lett. 2017 Jun 15;364(11). doi: 10.1093/femsle/fnx102.PubMed PMID: 28505287.

43. Chauvière G, Coconnier MH, Kerneis S, Darfeuille-Michaud A, Joly B, Servin AL.Competitive exclusion of diarrheagenic Escherichia coli (ETEC) from human enterocyte-like Caco-2 cells by heat-killed Lactobacillus. FEMS Microbiol Lett. 1992 Mar 15;70(3):213-7. PubMed PMID: 1624102.

44. Moyen EN, Bonneville F, Fauchère JL. [Modification of intestinal colonization and translocation of Campylobacter jejuni by erythromycin and an extract of Lactobacillus acidophilus in axenic mice]. Ann Inst Pasteur Microbiol (1985).1986 Mar-Apr;137A(2):199-207. French. PubMed PMID: 3122638

45. Sarkar A, Mandal S. Bifidobacteria-Insight into clinical outcomes and mechanisms of its probiotic action. Microbiol Res. 2016 Nov;192:159-171. doi:10.1016/j.micres.2016.07.001. Epub 2016 Jul 11. Review. PubMed PMID: 27664734.

46. Castro-Bravo N, Wells JM, Margolles A, Ruas-Madiedo P. Interactions of Surface Exopolysaccharides From Bifidobacterium and Lactobacillus Within the Intestinal Environment. Front Microbiol. 2018 Oct 11;9:2426. doi: 10.3389/fmicb.2018.02426. eCollection 2018. Review. PubMed PMID: 30364185; PubMed Central PMCID:PMC6193118.

47. Lebeer S, Vanderleyden J, De Keersmaecker SC. Host interactions of probiotic bacterial surface molecules: comparison with commensals and pathogens. Nat Rev Microbiol. 2010 Mar;8(3):171-84. doi: 10.1038/nrmicro2297. Review. PubMed PMID: 20157338.

48. Tareb R, Bernardeau M, Gueguen M, Vernoux JP. In vitro characterization of aggregation and adhesion properties of viable and heat-killed forms of two probiotic Lactobacillus strains and interaction with foodborne zoonotic bacteria, especially Campylobacter jejuni. J Med Microbiol. 2013 Apr;62(Pt 4):637-649. doi:10.1099/jmm.0.049965-0. Epub 2013 Jan 17. PubMed PMID: 23329323.

49. Mariam SH, Zegeye N, Tariku T, Andargie E, Endalafer N, Aseffa A. Potential of cell-free supernatants from cultures of selected lactic acid bacteria and yeast obtained from local fermented foods as inhibitors of Listeria monocytogenes,Salmonella spp. and Staphylococcus aureus. BMC Res Notes. 2014 Sep 4;7:606. doi: 10.1186/1756-0500-7-606. PubMed PMID: 25190588; PubMed Central PMCID: PMC4167124.

50. Lukic J, Chen V, Strahinic I, Begovic J, Lev-Tov H, Davis SC, Tomic-Canic M, Pastar I. Probiotics or pro-healers: the role of beneficial bacteria in tissue repair. Wound Repair Regen. 2017 Nov;25(6):912-922. doi: 10.1111/wrr.12607. Epub 2018 Feb 9. Review. PubMed PMID: 29315980; PubMed Central PMCID: PMC5854537.

51. Kareem KY, Hooi Ling F, Teck Chwen L, May Foong O, Anjas Asmara S. Inhibitory activity of postbiotic produced by strains of Lactobacillus plantarum using reconstituted media supplemented with inulin. Gut Pathog. 2014 Jun 14;6:23. doi: 10.1186/1757-4749-6-23. eCollection 2014. PubMed PMID: 24991236; PubMed Central PMCID: PMC4076511.

52. Ooi MF, Mazlan N, Foo HL, et al. Effects of carbon and nitrogen sources on bacteriocin inhibitory activity of postbiotic metabolites produced by Lactobacillus plantarum I–UL4. Malays J Microbiol. 2015;11:176e84.

53. Dobson A, Cotter PD, Ross RP, Hill C. Bacteriocin production: a probiotic trait? Appl Environ Microbiol. 2012 Jan;78(1):1-6. doi: 10.1128/AEM.05576-11. Epub 2011 Oct 28. Review. PubMed PMID: 22038602; PubMed Central PMCID: PMC3255625.

54. do Carmo MS, Santos CID, Araújo MC, Girón JA, Fernandes ES, Monteiro-Neto V. Probiotics, mechanisms of action, and clinical perspectives for diarrhea management in children. Food Funct. 2018 Oct 17;9(10):5074-5095. doi:10.1039/c8fo00376a. Review. PubMed PMID: 30183037.

55. Arai S, Iwabuchi N, Takahashi S, Xiao JZ, Abe F, Hachimura S. Orallyadministered heat-killed Lactobacillus paracasei MCC1849 enhancesantigen-specific IgA secretion and induces follicular helper T cells in mice. PLoS One. 2018 Jun 13;13(6):e0199018. doi: 10.1371/journal.pone.0199018. eCollection 2018. PubMed PMID: 29897995; PubMed Central PMCID: PMC5999281.

56. Izumo, T., Ida, M., Maekawa, T., Furukawa, Y., Kitagawa, Y. & Kiso, Y. (2011). Comparison of the immunomodulatory effects of live and heat-killed Lactobacillus pentosus S-PT84. J Health Sci 57, 304–310.

57. Sashihara T, Sueki N, Furuichi K, Ikegami S. Effect of growth conditions ofLactobacillus gasseri OLL2809 on the immunostimulatory activity for production of interleukin-12 (p70) by murine splenocytes. Int J Food Microbiol. 2007 Dec 15;120(3):274-81. Epub 2007 Sep 15. PubMed PMID: 17936392.

58. Hoarau C, Lagaraine C, Martin L, Velge-Roussel F, Lebranchu Y. Supernatant of Bifidobacterium breve induces dendritic cell maturation, activation, and survivalthrough a Toll-like receptor 2 pathway. J Allergy Clin Immunol. 2006Mar;117(3):696-702. Epub 2006 Jan 27. PubMed PMID: 16522473.

59. Lee IC, Tomita S, Kleerebezem M, Bron PA. The quest for probiotic effectormolecules–unraveling strain specificity at the molecular level. Pharmacol Res.2013 Mar;69(1):61-74. doi: 10.1016/j.phrs.2012.09.010. Epub 2012 Oct 8. Review.PubMed PMID: 23059538.

60. Vinogradov E, Sadovskaya I, Grard T, Chapot-Chartier MP. Structural studies ofthe rhamnose-rich cell wall polysaccharide of Lactobacillus casei BL23. CarbohydrRes. 2016 Nov 29;435:156-161. doi:10.1016/j.carres.2016.10.002. Epub 2016 Oct 8.PubMed PMID: 27756016.

61. Kolling Y, Salva S, Villena J, Alvarez S. Are the immunomodulatory properties of Lactobacillus rhamnosus CRL1505 peptidoglycan common for all Lactobacilli during respiratory infection in malnourished mice? PLoS One. 2018 Mar 8;13(3):e0194034. doi: 10.1371/journal.pone.0194034. eCollection 2018. PubMed PMID: 29518131; PubMed Central PMCID: PMC5843338.

62. Wu Z, Pan D, Guo Y, Sun Y, Zeng X. Peptidoglycan diversity and anti-inflammatory capacity in Lactobacillus strains. Carbohydr Polym. 2015 Sep

5;128:130-7. doi: 10.1016/j.carbpol.2015.04.026. Epub 2015 Apr 22. PubMed PMID: 26005148.

63. Patten DA, Leivers S, Chadha MJ, Maqsood M, Humphreys PN, Laws AP, Collett A. The structure and immunomodulatory activity on intestinal epithelial cells of the EPSs isolated from Lactobacillus helveticus sp. Rosyjski and Lactobacillus acidophilus sp. 5e2. Carbohydr Res. 2014 Jan 30;384:119-27. doi:

10.1016/j.carres.2013.12.008. Epub 2013 Dec 12. PubMed PMID: 24394883.

64. Gareau MG, Sherman PM, Walker WA. Probiotics and the gut microbiota in intestinal health and disease. Nat Rev Gastroenterol Hepatol. 2010

Sep;7(9):503-14. doi: 10.1038/nrgastro.2010.117. Epub 2010 Jul 27. Review. PubMed PMID: 20664519; PubMed Central PMCID: PMC4748966.

65. Das D, Baruah R, Goyal A. A food additive with prebiotic properties of an α-d-glucan from lactobacillus plantarum DM5. Int J Biol Macromol. 2014

Aug;69:20-6. doi: 10.1016/j.ijbiomac.2014.05.029. Epub 2014 May 20. PubMed PMID: 24857877.

66. Hongpattarakere, T.; Cherntong, N.; Wichienchot, S.; Kolida, S.; Rastall, R.A. In vitro prebiotic evaluation of exopolysaccharides produced by marine isolated lactic acid bacteria. Carbohyd. Polym. 2012, 87, 846–852.

67. Wang K, Li W, Rui X, Chen X, Jiang M, Dong M. Characterization of a novel exopolysaccharide with antitumor activity from Lactobacillus plantarum 70810. Int J Biol Macromol. 2014 Feb;63:133-9. doi: 10.1016/j.ijbiomac.2013.10.036. Epub 2013 Nov 1. PubMed PMID: 24189393.

68. De Marco S, Sichetti M, Muradyan D, Piccioni M, Traina G, Pagiotti R, Pietrella D. Probiotic Cell-Free Supernatants Exhibited Anti-Inflammatory and Antioxidant Activity on Human Gut Epithelial Cells and Macrophages Stimulated with LPS. Evid Based Complement Alternat Med. 2018 Jul 4;2018:1756308. doi:10.1155/2018/1756308. eCollection 2018. PubMed PMID: 30069221; PubMed Central PMCID: PMC6057331.

LES POSTBIOTIQUES DANS LE CADRE DE LA DENTISTERIE

Les maladies bucco-dentaires sont parmi les maladies les plus fréquentes dans le monde. Les caries dentaires et les parodontites graves (maladies des gencives) touchent respectivement 35 % et 10,8 % de la population mondiale.69GBD 201770Peres et al., 2010 Ces maladies sont causées par des microorganismes et sont la conséquence d’une dysbiose.71López-López et al., 2017

Les caries dentaires

L’étiologie des caries est polymicrobienne.71López-López et al., 2017 Les streptocoques (en particulier Streptococcus mutans) et les lactobacilles sont bien connus pour leur association avec les caries, mais de récentes analyses microbiologiques ont mis en évidence l’implication d’autres agents pathogènes tels que des bactéries non streptocoques.72.76Lamont et al., 2018 Hajishengallis et al., 2016 Mira et al., 2017 Tanner et al., 2018 Eriksson et al., 2017 Les caries dentaires sont dues à des interactions entre le régime alimentaire et le microbiote qui peuvent conduire à une acidification de l’écosystème, suivie d’une dysbiose, d’un biofilm cariogène ultérieur, et finalement à la destruction des tissus dentaires minéralisés.72Lamont et al., 201877.81Bowen et al., 2017 Kilian et al., 2016 Marsh et al., 2017 Takahashi et al., 2011 Pitts et al., 2017

La prévention des caries dentaires consiste à éliminer le biofilm cariogène existant, à empêcher l’accumulation du biofilm par action mécanique ou par des approches antimicrobiennes conventionnelles à large spectre, et à diminuer le taux de déminéralisation de l’émail.

Toutefois, ces approches n’ont pas donné de résultats adéquats chez les populations particulièrement vulnérables aux caries, comme les enfants et les personnes âgées qui ont des problèmes de dextérité empêchant un brossage de dents optimal.72Lamont et al., 2018  En outre, certaines zones comme les surfaces sulculaires et interproximales sont difficiles d’accès.72Lamont et al., 2018 Les antimicrobiens à large spectre tels que la chlorhexidine (CHX) ont une efficacité très limitée sur les biofilms, et les antiseptiques tels que le peroxyde d’hydrogène présentent également une activité antimicrobienne limitée sur les biofilms, même à des concentrations élevées.82Liu et al., 2018 En outre, ils peuvent accroître la susceptibilité à la réinfection par des agents pathogènes.83Guo et al., 2015 Des études récentes ont même montré que la CHX pouvait induire une perturbation supplémentaire du microbiote commensal84Chatzigiannidou et al., 2020 et provoquer un passage à un environnement acide, donc bénéfique pour les caries dentaires.85Bescos et al., 2020 Quant au fluor, il peut limiter la déminéralisation de l’émail et favoriser la reminéralisation, mais son effet sur le biofilm cariogène est limité.72Lamont et al., 2018  Il y a donc ici un besoin crucial de stratégies visant spécifiquement la dysbiose microbienne associée aux caries et le biofilm cariogène.

Les Parodontites

Les maladies parodontales englobent divers troubles inflammatoires des tissus de soutien des dents, qui comprennent la gencive, le ligament parodontal et l’os alvéolaire (collectivement appelés parodonte), et vont de la gingivite à la parodontite chronique.86Kinane et al., 201787Hajishengallis et al., 2015 L’un des facteurs clés de l’étiologie de la parodontite est une subversion bactérienne active de la réponse immunitaire de l’hôte, conduisant à la destruction des tissus et permettant la persistance des agents pathogènes.87Hajishengallis et al., 2015 Cela conduit au maintien d’une inflammation dysbiotique et, en fin de compte, à la perte des dents.88Darveau et al., 201289Hajishengallis et al., 2011 En outre, la parodontite a été associée à un large éventail de maladies systémiques, notamment les maladies cardiovasculaires, le diabète sucré et les complications lors de grossesses.90.95Monsarrat et al., 2016 Beck et al., 2019 Kumar et al., 2017 Bui et al., 2019 Hand et al., 2016 Potempa et al., 2017 

La prise en charge de la gingivite et de la parodontite chronique repose sur des stratégies visant à éliminer le biofilm pathogène et à contrôler l’inflammation. Elles comprennent le débridement (élimination de la plaque dentaire et du tartre avec détartrage et surfaçage radiculaire), les interventions chirurgicales, le suivi par prophylaxie professionnelle, les pratiques quotidiennes d’hygiène bucco-dentaire et, dans certains cas, les thérapies d’appoint telles que les antibiotiques et les antimicrobiens systémiques.86Kinane et al., 201796Gatei et al., 201797van der Weijden et al., 2005   

Cependant, si ces approches conduisent à une réduction temporaire du biofilm et de l’inflammation qui en résulte, elles ne parviennent pas à contrôler la maladie chez une proportion significative de patients.96.98Gatei et al., 2017 van der Weijden et al., 2005 Quirynen et al., 2000 Dans ce contexte, il est nécessaire de mettre en place des stratégies d’appoint alternatives qui ciblent spécifiquement le biofilm pathogène et modulent l’immunité dans la cavité buccale.99.101Teughels et al., 2011 Bustamante et al., 2019 Hoare et al., 2017  

Ainsi, les postbiotiques représentent une opportunité sûre et efficace de remédier aux limites des stratégies actuelles de prévention et de traitement liées à la gestion des caries dentaires et des maladies parodontales.

Lactobacillus paracasei GMLN-33

Le L. paracasei GMNL-33 tyndallisé, également appelé ADP1, est un postbiotique dérivé d’une souche tyndallisée de Lactobacillus paracasei. La tyndallisation est un processus par lequel l’inactivation est obtenue par la combinaison de traitements thermiques avec des périodes d’incubation à des températures plus basses.40Piqué et al., 2019102Kim et al., 2012 L. paracasei GMNL-33 appartient au genre Lactobacillus et au groupe Lactobacillus casei (LCG). Les espèces de L. paracasei sont généralement reconnues être sûres par la FDA et présentes sur la liste QPS de l’EFSA103Hill et al., 2018. Ainsi, elles sont déjà utilisées comme probiotiques dans diverses applications cliniques et industrielles.

Plusieurs études scientifiques et cliniques ont montré que le L. paracasei GMNL-33 tyndallisé pouvait inhiber les cario- et pério-pathogènes, ce qui lui confère des propriétés bénéfiques pour la santé bucco-dentaire :

Inhibition in vitro des cario- et pério-pathogènes

In co-culture experiments, after 1 hour, tyndallized L. paracasei GMNL-33 inhibited 60 to 70% of the growth of P. gingivalis and C. periodontitii, and 50% of the growth of P. intermedia and a clinical specimen sampling of subgingival plaque. After 3 hours, 80% of the growth of P. gingivalis and C. periodontitii was inhibited.

Inhibition in vivo du cario-pathogène S. mutans

Soixante-dix-huit sujets ont participé à une étude en double aveugle randomisée, et contrôlée par un placébo. Un groupe test (n=42) et un groupe témoin (n=36) ont pris respectivement un comprimé contenant le L. paracasei GMNL-33 tyndallisé (3×108 cellules par comprimé) et un comprimé placébo trois fois par jour pendant deux semaines. La numération bactérienne des S. mutans salivaires, des lactobacilles et la capacité du tampon salivaire ont été mesurées à l’aide de kits au début (T1) et à la fin (T2) du traitement et 2 semaines après le traitement (T3). Une réduction significative du nombre de S. mutans salivaires a été détectée entre T2 et T3 (p=0,016).104Chuang et al., 2011 

Dans une étude impliquant un groupe de 20 enfants âgés de 13 à 15 ans, une réduction de 73,5 % du nombre de S. mutans a été observée après 6 semaines d’utilisation d’un dentifrice contenant du L. paracasei GMNL-33 tyndallisé.105Maden et al., 2018 Une autre étude impliquant un petit groupe d’enfants (âge moyen de 10,2 ans) a montré qu’un dentifrice contenant du L. paracasei GMNL-33 tyndallisé réduisait significativement la croissance du biofilm de S. mutans jusqu’à 45 minutes après le brossage et l’exposition immédiate à une dose de 40 % de saccharose.106Srinivasan et al., 2017 

Inhibition in vivo du pério-pathogène P. gingivalis

Quarante sujets ont participé à un essai en double aveugle, randomisé, contrôlé par un placebo. Un groupe test (n=20) et un groupe témoin (n=20) ont pris respectivement un comprimé de L. paracasei GMNL-33 tyndallisé (3×108 cellules/comprimé) et un comprimé placébo trois fois par jour pendant 8 semaines. La numération bactérienne totale par voie orale, la numération des pathogènes parodontaux (P. gingivalis & P. intermedia) ont été examinées au début du test, après 4 semaines et après 8 semaines.

Après 8 semaines, la numération bactérienne orale totale a diminué de manière significative dans le groupe test par rapport au groupe témoin. La croissance de P. gingivalis et de P. intermedia a été presque complètement stoppée dans le groupe test (95% des patients) après 4 semaines.107Ching-Pei et al., 2007: Please contact us 

Consulter la bibliographie Fermer la bibliographie

40. Piqué N, Berlanga M, Miñana-Galbis D. Health Benefits of Heat-Killed (Tyndallized) Probiotics: An Overview. Int J Mol Sci. 2019 May 23;20(10). pii: E2534. doi: 10.3390/ijms20102534. Review. PubMed PMID: 31126033; PubMed Central PMCID: PMC6566317.

69. GBD 2017 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for354 diseases and injuries for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2018 Nov10;392(10159):1789-1858. doi: 10.1016/S0140-6736(18)32279-7. Epub 2018 Nov 8. PubMed PMID: 30496104; PubMedCentral PMCID: PMC6227754.

70. Peres MA, Macpherson LMD, Weyant RJ, Daly B, Venturelli R, Mathur MR, Listl S, Celeste RK, Guarnizo-Herreño CC, Kearns C, Benzian H, Allison P, Watt RG. Oral diseases: a global public health challenge. Lancet. 2019 Jul 20;394(10194):249-260. doi: 10.1016/S0140-6736(19)31146-8. Review. Erratum in: Lancet. 2019 Sep 21;394(10203):1010. PubMed PMID: 31327369.

71. López-López A, Camelo-Castillo A, Ferrer MD, Simon-Soro Á, Mira A. Health-Associated Niche Inhabitants as Oral Probiotics: The Case of Streptococcus dentisani. Front Microbiol. 2017 Mar 10;8:379. doi: 10.3389/fmicb.2017.00379. eCollection 2017. PubMed PMID: 28344574; PubMed Central PMCID: PMC5344910.

72. Lamont RJ, Koo H, Hajishengallis G. The oral microbiota: dynamic communities and host interactions. Nat Rev Microbiol. 2018 Dec;16(12):745-759. doi: 10.1038/s41579-018-0089-x. Review. PubMed PMID: 30301974; PubMed Central PMCID: PMC6278837.

73. Hajishengallis E, Parsaei Y, Klein MI, Koo H. Advances in the microbialetiology and pathogenesis of early childhood caries. Mol Oral Microbiol. 2017 Feb;32(1):24-34. doi: 10.1111/omi.12152. Epub 2016 Feb 4. Review. PubMed PMID: 26714612; PubMed Central PMCID: PMC4929038.

74. Mira A, Simon-Soro A, Curtis MA. Role of microbial communities in thepathogenesis of periodontal diseases and caries. J Clin Periodontol. 2017 Mar;44 Suppl 18:S23-S38. doi: 10.1111/jcpe.12671. Review. PubMed PMID: 28266108.

75. Tanner ACR, Kressirer CA, Rothmiller S, Johansson I, Chalmers NI. The Caries Microbiome: Implications for Reversing Dysbiosis. Adv Dent Res. 2018Feb;29(1):78-85. doi: 10.1177/0022034517736496. Review. PubMed PMID: 29355414.

76. Eriksson L, Lif Holgerson P, Esberg A, Johansson I. Microbial Complexes and Caries in 17-Year-Olds with and without Streptococcus mutans. J Dent Res. 2018 Mar;97(3):275-282. doi: 10.1177/0022034517731758. Epub 2017 Sep 20. PubMed PMID: 28930642.

77. Bowen WH, Burne RA, Wu H, Koo H. Oral Biofilms: Pathogens, Matrix, andPolymicrobial Interactions in Microenvironments. Trends Microbiol. 2018Mar;26(3):229-242. doi: 10.1016/j.tim.2017.09.008. Epub 2017 Oct 30. Review. PubMed PMID: 29097091; PubMed Central PMCID: PMC5834367.

78. Kilian M, Chapple IL, Hannig M, Marsh PD, Meuric V, Pedersen AM, Tonetti MS,Wade WG, Zaura E. The oral microbiome – an update for oral healthcareprofessionals. Br Dent J. 2016 Nov 18;221(10):657-666. doi: 10.1038/sj.bdj.2016.865. PubMed PMID: 27857087.

79. Marsh PD, Zaura E. Dental biofilm: ecological interactions in health anddisease. J Clin Periodontol. 2017 Mar;44 Suppl 18:S12-S22. doi:10.1111/jcpe.12679. Review. PubMed PMID: 28266111.

80. Takahashi N, Nyvad B. The role of bacteria in the caries process: ecological perspectives. J Dent Res. 2011 Mar;90(3):294-303. doi: 10.1177/0022034510379602. Epub 2010 Oct 5. Review. PubMed PMID: 20924061.

81.Pitts NB, Zero DT, Marsh PD, Ekstrand K, Weintraub JA, Ramos-Gomez F, Tagami J, Twetman S, Tsakos G, Ismail A. Dental caries. Nat Rev Dis Primers. 2017 May 25;3:17030. doi: 10.1038/nrdp.2017.30. Review. PubMed PMID: 28540937.

82. Liu Y, Ren Z, Hwang G, Koo H. Therapeutic Strategies Targeting Cariogenic Biofilm Microenvironment. Adv Dent Res. 2018 Feb;29(1):86-92. doi: 10.1177/0022034517736497. Review. PubMed PMID: 29355421; PubMed Central PMCID: PMC5784482.

83. Guo L, McLean JS, Yang Y, Eckert R, Kaplan CW, Kyme P, Sheikh O, Varnum B, Lux R, Shi W, He X. Precision-guided antimicrobial peptide as a targeted modulator of human microbial ecology. Proc Natl Acad Sci U S A. 2015 Jun 16;112(24):7569-74.doi: 10.1073/pnas.1506207112. Epub 2015 Jun 1. PubMed PMID: 26034276; PubMed Central PMCID: PMC4475959.

84. Chatzigiannidou I, Teughels W, Van de Wiele T, Boon N. Oral biofilms exposure to chlorhexidine results in altered microbial composition and metabolic profile. NPJ Biofilms Microbiomes. 2020 Mar 20;6(1):13. doi: 10.1038/s41522-020-0124-3. PubMed PMID: 32198347; PubMed Central PMCID: PMC7083908.

85. Bescos R, Ashworth A, Cutler C, Brookes ZL, Belfield L, Rodiles A,Casas-Agustench P, Farnham G, Liddle L, Burleigh M, White D, Easton C, Hickson M. Effects of Chlorhexidine mouthwash on the oral microbiome. Sci Rep. 2020 Mar 24;10(1):5254. doi: 10.1038/s41598-020-61912-4. PubMed PMID: 32210245; PubMed Central PMCID: PMC7093448.

86. Kinane DF, Stathopoulou PG, Papapanou PN. Periodontal diseases. Nat Rev Dis Primers. 2017 Jun 22;3:17038. doi: 10.1038/nrdp.2017.38. Review. PubMed PMID: 28805207.

87. Hajishengallis G. Periodontitis: from microbial immune subversion to systemic inflammation. Nat Rev Immunol. 2015 Jan;15(1):30-44. doi: 10.1038/nri3785. Review. PubMed PMID: 25534621; PubMed Central PMCID: PMC4276050.

88. Darveau RP, Hajishengallis G, Curtis MA. Porphyromonas gingivalis as a potential community activist for disease. J Dent Res. 2012 Sep;91(9):816-20. doi: 10.1177/0022034512453589. Epub 2012 Jul 6. PubMed PMID: 22772362; PubMed Central PMCID: PMC3420389.

89. Hajishengallis G, Liang S, Payne MA, Hashim A, Jotwani R, Eskan MA, McIntosh ML, Alsam A, Kirkwood KL, Lambris JD, Darveau RP, Curtis MA. Low-abundance biofilm species orchestrates inflammatory periodontal disease through the commensal microbiota and complement. Cell Host Microbe. 2011 Nov 17;10(5):497-506. doi: 10.1016/j.chom.2011.10.006. Epub 2011 Oct 27. PubMed PMID:22036469; PubMed Central PMCID: PMC3221781.

90. Monsarrat P, Blaizot A, Kémoun P, Ravaud P, Nabet C, Sixou M, Vergnes JN. Clinical research activity in periodontal medicine: a systematic mapping of trial registers. J Clin Periodontol. 2016 May;43(5):390-400. doi: 10.1111/jcpe.12534. Epub 2016 Apr 13. Review. PubMed PMID: 26881700.

91. Beck JD, Papapanou PN, Philips KH, Offenbacher S. Periodontal Medicine: 100 Years of Progress. J Dent Res. 2019 Sep;98(10):1053-1062. doi:10.1177/0022034519846113. PubMed PMID: 31429666.

92. Kumar PS. From focal sepsis to periodontal medicine: a century of exploring the role of the oral microbiome in systemic disease. J Physiol. 2017 Jan 15;595(2):465-476. doi: 10.1113/JP272427. Epub 2016 Aug 28. Review. PubMed PMID:27426277; PubMed Central PMCID: PMC5233655.

93. Bui FQ, Almeida-da-Silva CLC, Huynh B, Trinh A, Liu J, Woodward J, Asadi H, Ojcius DM. Association between periodontal pathogens and systemic disease. Biomed J. 2019 Feb;42(1):27-35. doi: 10.1016/j.bj.2018.12.001. Epub 2019 Mar 2. Review. PubMed PMID: 30987702; PubMed Central PMCID: PMC6468093.

94. Hand TW, Vujkovic-Cvijin I, Ridaura VK, Belkaid Y. Linking the Microbiota, Chronic Disease, and the Immune System. Trends Endocrinol Metab. 2016 Dec;27(12):831-843. doi: 10.1016/j.tem.2016.08.003. Epub 2016 Sep 10. Review. PubMed PMID: 27623245; PubMed Central PMCID: PMC5116263.

95. Potempa J, Mydel P, Koziel J. The case for periodontitis in the pathogenesis of rheumatoid arthritis. Nat Rev Rheumatol. 2017 Oct;13(10):606-620. doi: 10.1038/nrrheum.2017.132. Epub 2017 Aug 24. Review. PubMed PMID: 28835673.

96. Gatej S, Gully N, Gibson R, Bartold PM. Probiotics and Periodontitis – A Literature Review. J Int Acad Periodontol. 2017 Apr 1;19(2):42-50. Review. PubMed PMID: 31473722.

97. van der Weijden GA, Hioe KP. A systematic review of the effectiveness of self-performed mechanical plaque removal in adults with gingivitis using a manual toothbrush. J Clin Periodontol. 2005;32 Suppl 6:214-28. Review. PubMed PMID:16128840.

98. Quirynen M, Teughels W, De Soete M, van Steenberghe D. Topical antiseptics and antibiotics in the initial therapy of chronic adult periodontitis: microbiological aspects. Periodontol 2000. 2002;28:72-90. Review. PubMed PMID:12013349.

99. Teughels W, Loozen G, Quirynen M. Do probiotics offer opportunities to manipulate the periodontal oral microbiota? J Clin Periodontol. 2011 Mar;38 Suppl 11:159-77. doi: 10.1111/j.1600-051X.2010.01665.x. Review. PubMed PMID: 21323712.

100. Bustamante M, Oomah BD, Mosi-Roa Y, Rubilar M, Burgos-Díaz C. Probiotics as an Adjunct Therapy for the Treatment of Halitosis, Dental Caries and Periodontitis. Probiotics Antimicrob Proteins. 2019 Feb 7. doi: 10.1007/s12602-019-9521-4. [Epub ahead of print] Review. PubMed PMID: 30729452.

101. Hoare A, Marsh PD, Diaz PI. Ecological Therapeutic Opportunities for Oral Diseases. Microbiol Spectr. 2017 Aug;5(4). doi: 10.1128/microbiolspec.BAD-0006-2016. Review. PubMed PMID: 28840820; PubMed Central PMCID: PMC5573124.

102. Kim H, Kim H, Bang J, Kim Y, Beuchat LR, Ryu JH. Reduction of Bacillus cereus spores in sikhye, a traditional Korean rice beverage, by modified tyndallization processes with and without carbon dioxide injection. Lett Appl Microbiol. 2012 Sep;55(3):218-23. doi: 10.1111/j.1472-765X.2012.03278.x. Epub 2012 Jul 13. PubMed PMID: 22725610.

103. Hill D, Sugrue I, Tobin C, Hill C, Stanton C, Ross RP. The Lactobacillus casei Group: History and Health Related Applications. Front Microbiol. 2018 Sep 10;9:2107. doi: 10.3389/fmicb.2018.02107. eCollection 2018. Review. PubMed PMID: 30298055; PubMed Central PMCID: PMC6160870.

104. Chuang LC, Huang CS, Ou-Yang LW, Lin SY. Probiotic Lactobacillus paracasei effect on cariogenic bacterial flora. Clin Oral Investig. 2011 Aug;15(4):471-6. doi: 10.1007/s00784-010-0423-9. Epub 2010 May 26. PubMed PMID: 20502929; PubMed Central PMCID: PMC3133768.

105. Maden EA, Altun C, Ozmen B, Basak F. Antimicrobial Effect of Toothpastes Containing Fluoride, Xylitol, or Xylitol-Probiotic on Salivary Streptococcus mutans and Lactobacillus in Children. Niger J Clin Pract. 2018 Feb;21(2):134-138. doi: 10.4103/njcp.njcp_320_16. PubMed PMID: 29465044.

106. Srinivasan S, Nandlal B, Rao MVS. Assessment of plaque regrowth with a probiotic toothpaste containing Lactobacillus paracasei: A spectrophotometric study. J Indian Soc Pedod Prev Dent. 2017 Oct-Dec;35(4):307-311. doi: 10.4103/JISPPD.JISPPD_323_16. PubMed PMID: 28914242.

107. Ching-Pei Chen, The efficacy and safety of ADP-1 (lactobacillus paracasei GMNL-33) for periodontal pathogens, a placebo control trial.

We use cookies to give you the best online experience. By agreeing you accept the use of cookies in accordance with our cookie policy.